

 Encouraging Anti-Diabetic Lifestyles in New Mexico

Communities

 New Mexico Supercomputing Challenge

Final Report

April 8, 2020

Team Number: 17

School: Grady High School

Team Members:

• Alexis Brandsma (alexisbrandsma@gmail.com) (575 231-9062)

• Erynn Vetterly (erynn.vetterly@gmail.com) (575 760-7601)

• Tristen Pool (tristenpool89@gmail.com) (575 760-1972)

Teacher:

• Leah Lee (llee@gradyschool.com)

Project Mentor:

• Alan Daugherty (adaugherty@melroseschools.org)

mailto:alexisbrandsma@gmail.com
mailto:erynn.vetterly@gmail.com
mailto:tristenpool89@gmail.com

1

Table of Contents

Introduction: ... 3

Diabetes: ..3

Impact of Diabetes: ...4

Definition of Problem: ..4

Data Management: .. 5

Using Python to Analyze .csv Files ..5

Computational Method: .. 8

About Mellitus: ..8

Mellitus(5.0): ..9

Mellitus(5.1): ... 10

Neural Network: .. 12

About Neural Networks: .. 13

DANN(2.0) – Sigmoid: ... 15

DANN(3.1) -RELU: ... 18

Conclusion: .. 20

Results: .. 20

Netlogo Execution Shell Bug: ... 22

Suggestions for Further Implementation:.. 23

Acknowledgements: .. 24

References: .. 25

Appendix: ... 27

2

Encouraging Anti-Diabetic Lifestyles in New Mexico

Communities

Executive Summary:

Diabetes is a chronic disease that causes billions of dollars in economic losses every year. It

consists of two main types: type 1 and type 2. Type 2 diabetes is the project's focus because it is

inherently preventable. The cause of type 1 diabetes is not yet known, and there is not a proven

way to prevent it [3]. 95 percent of diabetes cases are type 2. We aim to identify county

demographic factors that correlate with diabetes rates and illustrate this with a program that is

capable of accurately predicting a community's diabetes rate, given the appropriate data. First,

we analyzed variables by making scatter plots using Python to extract .csv data. The variables

that showed a correlation with the diabetes rates were inputted into our neural network (DANN).

A neural network is an effective method to analyze variables because diabetes rates are complex,

and the result of many different factors, our team needed a non-linear method to handle the

demographic data properly. Mellitus is our project's central creation. It can accurately model a

town, its demographics, and its hypothetical diabetes rate. Its vibrant interface is built-in Netlogo

6.1.1. An essential element to its performance is the implementation of DANN with the py

extension. Mellitus and DANN can work together to make calculations accurately and

effectively exhibit the results. Through this method, we identified five main variables that

significantly impact diabetes rates: percent of American Indian and Alaska Native, poverty,

education, commute time, and health insurance. Mellitus has proved to be able to consistently

predict accurate diabetes rates for New Mexico counties using data from these variables.

3

Introduction:

Diabetes:

Diabetes is a chronic disease that affects

how the pancreas functions. The pancreas

can either be damaged by the immune

system, which will cause a person to get

type 1 diabetes. Or, the pancreas can't

produce enough insulin for the body, which

will result in a person contracting type 2

diabetes. Type 1 diabetes is less common

than type 2. A person with type 1 diabetes

will have to inject themselves with insulin,

which would make them insulin-dependent

[19]. The person would have to monitor

their glucose levels as well. As for type 2

diabetics, they will have to take medication,

and they would also have to monitor their

glucose levels. If the body is having issues

producing insulin, the person has to take an

injection of medication that encourages the

pancreas to operate properly. Some factors

that can contribute to type 2 diabetes are an

unhealthy diet, not being active, being

overweight, and even genetics. About 95

percent of diabetes cases are type 2 [13].

Type 2 is reasonably prevented and is the

focus of this project. The factors that can

contribute to type 1 diabetes are genetics,

and a virus that tells the immune system to

attack the pancreas. Type 2 diabetes is

reversible through diet changes and weight

loss and can result in a person's glucose

levels returning to normal. Both types of

diabetes have become increasingly common

across the United States. Unlike type 2

diabetes, type 1 diabetes is neither reversible

nor preventable.

Figure 1- Number and percentage of U.S. population
with diagnosed diabetes (1958 – 2015)

4

Impact of Diabetes:

Diabetes has a consequential impact on New

Mexico’s health and economy. It affects the

body’s systems, which makes one’s immune

system weaker than in individuals without

diabetes. Type 2 diabetes raises the risk of

cardiovascular problems. These are just two

examples of the tremendous economic

losses that are caused by diabetes. In 2017,

approximately 327 billion dollars were spent

on diabetes-related costs such as buying

insulin, a pump, medical supplies,

medications, and doctor’s visits in the U.S

alone [11]. This cost does not include the

loss of productivity from diabetes. Also,

long term diabetes that is not treated

properly can cause health problems as well.

It can damage blood vessels, which can

cause problems in the kidneys, eyes, and

feet. In New Mexico, more than 14.1 percent

of the population suffers from diabetes [12].

Definition of Problem:

Diabetes is a widespread health problem that

is a result of one’s entire lifestyle. Our

project aims to identify demographic factors

that correlate with diabetes rate data in New

Mexico counties and visualize their effect in

as much detail as possible. Society as a

Figure 2- Ranked leading causes of death in New
Mexico, 2017 [8]

5

whole needs to be aware of the

demographics that affect diabetes rates on a

macro level. It is on the macro level that a

general population can be encouraged to live

an anti-diabetic lifestyle. A visual model is

an effective way of analyzing demographics

as well as educating others on their impacts

on diabetes. Our ideal result is a program

that is capable of correctly predicting the

diabetes rate of a town based on inputted

factors.

Data Management:

To determine what variables have a

correlation with diabetes rates, we found

scatter plots to be the most effective

technique. They are quick to analyze and

simple to produce. In total, eight variables

were analyzed. If the scatter plot showed a

correlation, the variable was implemented

into DANN (our artificial neural network).

Graphs can be found in the Appendix. The

diabetes csv data that is used is the 2017

diabetes rates for all thirty-three New

Mexico counties from the CDC [16]. The

other demographic data that was compared

to the diabetes rates is from the U.S. Census

Bureau [14]. The various figures that were

collected from the Census range from 2017-

2019.

Using Python to Analyze .csv Files

We found .csv to be a useful format for our

data collection. Python has a csv module

that can be easily used to extract data from a

csv file, and the format is widely utilized

across many sources like the U.S. Census

and the CDC [2]. It was decided that using

6

Python is the best technique to create the

scatter plots because a computational

program is more capable of facilitating the

data for all thirty-three New Mexico

counties- a task that would be tedious using

a method that requires manual entry. Eight

programs were made to make the scatter

plots, one for each variable. Each program

works similarly- the only parameters that

differ are the name of the .csv files, the

name of the row that is being extracted, and

the cosmetic details of the scatter plot such

as the title. Matplotlib is a library that allows

for comprehensive data visualization in

Python. Once the programs have recorded

the data from the csv files, they use

Matplotlib to produce a scatter plot. After

the scatter plot was made, it was manually

determined if a correlation was

present. Scatter Plot

Overview: Considering the ambiguity of

diabetes rates, we found several interesting

correlations in the scatter plots. The

variables that we concluded correlated with

the diabetes rates in New Mexico are

persons without health insurance, percent of

American Indian and Alaska native alone,

mean commute time, education (percent of

population with high school or higher), and

poverty rates. Note that the diabetes rate

data includes both type 1 and type 2

diabetes. As stated in “Diabetes”, roughly 95

percent of diabetes diagnoses are type 2.

Due to the unavailability of data that only

contains the rate of type 2 diabetes, we must

compare the variables to the whole diabetes

rate. A situation where this could have

interfered with our results could be in the

education level scatter plot. Education

would not affect type 1 diabetes, for no one

knows how to prevent it. Since ethnicity has

been found to play a role in both types of

diabetes, the plot comparing diabetes to

percent of American Indian and Alaska

Native may be more viable than other tests

that include a variable that doesn’t

7

contribute to type 1 as well. The plot with

American Indian and Alaska Native shows

almost no correlation. It was surprising that

there was not a more significant correlation

for that variable since ethnicity plays a

major role in both types of diabetes.

American Indian/Alaska Native adults are

nearly three times more likely than

Caucasian adults to be diagnosed with

diabetes [15]. It was concluded that because

of the known connections between those

ethnicities on diabetes, and due to numerous

outliers that support a positive correlation,

percent of American Indian and Alaska

Native county data would be used in our

neural network. Persons without health

insurance under age 65 is an interesting

demographic. Since diabetes is often the

result of how someone lives their life, it was

necessary to have a way of measuring how

accessible medical services are to the

counties’ populations. We also wanted to

potentially measure how much individuals

in the area value their health involuntarily or

deliberately with one’s attitudes.

Unexpectedly, there is an apparent positive

correlation between the insurance data and

diabetes rates.

Figure 3- Four of the scatter plots that were used to
test demographic variables with diabetes rates. Refer
to the Appendix for more graphs

8

Computational Method:

About Mellitus:

Our goal when creating Mellitus was to

create a simple, easy to interpret, model that

is as close to a real community as possible.

In many aspects, this has been achieved.

There have been seven versions of Mellitus.

Mellitus is a Latin word for Diabetes. It is

built in Netlogo 6.1.1. Over each version, it

has been gradually improved. Figure 4

shows the difference between the first

version and the final version of Mellitus.

There is a significant improvement in the

usability, functionality, visual appearance,

and overall accuracy of the model. Version

1.0 was based on little real-world data.

Version 5.1 has proven to be quite useful in

predicting a logical diabetes-rate, given the

appropriate variable values. A central

element to Mellitus is DANN (Diabetes

Artificial Neural Network), which is

imported with the py extension built into

Netlogo. We needed a way to properly

measure the number of people that are active

in a community whether they are travelers or

residents. For example, a town like

Tucumcari, NM, has a relatively low

number of residents but a high number of

travelers due to its proximity to Interstate

40. This affects a community’s demographic

figures and can be an obstacle when

analyzing data. In order to appropriately

compare demographics, we created a metric

called TPR (total population rating). It is the

area’s annual average daily traffic (AADT)

from the New Mexico Department of

Transportation plus the community’s

population. Mellitus Variables: Factors that

Figure 4- Comparison between Mellitus 1.0 and Mellitus 5.1

9

Mellitus is capable of analyzing include

education, commute-time, poverty, percent

of population without health insurance, and

percent of Indian and Alaska Native. These

are all treated as independent variables, each

one controlled by the user. The result is a

change in the DANN diabetes rate

prediction. The factors that were inputted

into the neural network have been

determined by producing and analyzing

scatter plots. See “Scatter Plot Overview”

for more information on this process.

Broadband internet access and median

household income did not have a viable

correlation with diabetes rates in New

Mexico. Custom Turtles: Custom Turtle

shapes have been created to use instead of

the default shapes in Netlogo. These are

used to symbolize the demographics of the

town. For example, when the TPR is raised

more residential facilities appear in the

interface.

Mellitus(5.0):

Mellitus 5.0 is the most polished version of

Mellitus that doesn’t utilize DANN. This

means that the py extension is not required.

Instead of DANN, Mellitus 5.0 uses linear

equations derived from the lines of best fit

of the scatter plots created. Scatter plots

Figure 5- Several custom turtles that are used in Mellitus

10

were also used to determine the functionality

dynamics of Mellitus. Since our project aims

for Mellitus to symbolize a real-world town

as accurately as possible, we made scatter

plots visualizing TPR and variables like

number of fast-food restaurants or number

of healthy-food restaurants using a similar

method that was discussed in “Data

Management”. Then lines of best fit for the

scatter plots were drawn, and the linear

equations were implemented. For example,

the scatter plot comparing the number of

fast-food restaurants in a town, and its TPR

showed that one fast-food restaurant tends to

serve about 5000 TPR. In Mellitus 5.0,

every 5000 TPR, a fast-food restaurant

appears in the town. The lines of best fit

were converted from slope-intercept form to

x-equals so that their outputs could be

utilized in Mellitus. Mellitus 5.0 also uses

this method for the independent variables

that contribute to the diabetes rate like

education, poverty, and commute time. Its

diabetes rate prediction is not accurate to the

real world, but that was not our intention in

this version. It outputs a reasonable number

that changes appropriately based on how the

variables are changed by the user. We

created it to have a version of Mellitus that

doesn’t require the Python extension. It

greatly improves the accessibility of our

research and makes Netlogo Web or a

computer without Python an option for

anyone that would otherwise not be able to

use Mellitus. That’s also why 5.0 has

essentially the same interface as 5.1 and is

capable of analyzing many of the same

variables.

Mellitus(5.1):

The central result of our project is Mellitus

5.1. It has many similarities to Mellitus 5.0,

but its main upgrade is support for DANN

2.0. The scatter plot derived linear equations

11

still control the visual functionality of the

model, like how many restaurants are open

in the town. However, DANN brings the

ability for Mellitus to compute far more

powerfully with a non-linear approach to the

diabetes rate. Refer to “DANN(2.0)-

Sigmoid” for an in-depth explanation on

DANN 2.0; this section will focus on its

execution in Mellitus 5.1. The program takes

the value of each variable from the sliders

and puts them in a format that can be read

by DANN using the py:set command.

DANN 2.0 is imported into Mellitus by

using the py:run command. The diabetes

rate prediction is made using py:runresult.

Py:set is capable of giving a variable in a

Python script a Netlogo value. Py:runresult

converts Python values to Netlogo values. In

Mellitus, it is used to store the float output

of DANN in a Netlogo variable. Py:run is

able to run the Python script required for the

program. It allows a Python script to be used

in Netlogo. DANN runs continuously in

Mellitus, and its output is displayed in the

interface on a monitor and a plot. When the

sliders are adjusted the data is easily

analyzed by the user, and a correlation can

be made with the plot. Refer to the

“Evaluation and Testing” section of

“DANN(2.0)- Sigmoid” for an overview of

the performance of DANN 2.0. Mellitus

proves to be an effective medium for

exhibiting the output of DANN 2.0, and

shows far more and more detailed

information than would be possible in native

Python. The plot tool in Netlogo allows

correlations between the slider controlled

independent variables and changes in the

virtual diabetes rate to be clearly made.

Since DANN is constantly running in

Mellitus, the virtual diabetes rate is

constantly adapting and factors visually link

before the user’s eye. We couldn’t have

achieved this using any other method. In

many situations, the correlations made by

Mellitus are outstanding and even somewhat

12

contradict the correlations made by our

scatter plots. The scatter plot with poverty

data suggests a positive correlation between

county poverty rates and diabetes rates,

while generally, Mellitus suggests a negative

correlation between the two. Remember that

Mellitus does not function linearly and does

not always behave this way. Previously, we

mentioned that it was surprising to see such

an insubstantial correlation between the

percent of American Indian and Alaska

Native county data and diabetes rates. This

variable is widely known to affect one’s

odds of being diagnosed with diabetes, so

we were not surprised when Mellitus

showed that it had a positive correlation

with diabetes rates. However, even in

Mellitus, it does not appear to affect the

diabetes rate dramatically. The other

variables mostly perform in the ways that

were suggested by the scatter plots when

operating in Mellitus. For instance, Mellitus

exhibits a strong positive correlation

between education levels and diabetes rates.

Neural Network:

We had originally planned to use a Chi-

Square Test to analyze the variables and

their effect on diabetes rates, however a few

problems occurred. A Chi-Squared Test is

routinely used to test if a distribution of

categorical variables is independent. This

approach won’t work because we aren’t

analyzing categorical data, we’re analyzing

a numerical disease rate. A Neural Network

is a useful alternative because diabetes rates

are determined by the lifestyle of a

Figure 6- Diagram of artificial neural network

13

population, a wide range of factors to study.

It could potentially observe enough

frequency in the data to make a viable

prediction off it. A Neural Network could

also be implemented into Mellitus fairly

easily with the Netlogo py extension. Our

Neural Network is named DANN (Diabetes

Artificial Neural Network

About Neural Networks:

Artificial Neural Networks are ambiguously

based on the biological networks that

compose a human brain. They can solve

problems less like a computer and more like

a human, without the need for explicit

commands [4]. Instead, they analyze

example data to learn. This process is

especially useful when evaluating abstract

figures like factors that contribute to

diabetes rates. A Neural Network is made up

of 3 main layers; an input layer, n number of

hidden layers, and an output layer [18]. If

there is more than one hidden layer, it is

considered a Deep Neural Network. When

values are transmitted through neurons, the

weights are applied to the values and passed

into the activation function with the bias. It

is widespread for weights and biases to be

set to random values initially so that they

can be adjusted later on by the program.

Parameters that cannot be regulated by the

program itself are called hyperparameters.

This includes learning rate, activation

function, loss function, and more. The

learning rate controls how quickly the

network is acclimated to a data pattern [1].

If the learning rate is too high, the output

may not be as accurate as anticipated.

However, if it’s too low, the program could

crash during the training process. The

activation function is very important. Some

of the most popular activation functions

14

include Sigmoid, RELU, Tanh, and

Softmax, usually in the output layer and

often when classifying objects. Activation

functions calculate a weighted sum and add

bias to it. They’re the reason for Neural

Networks’ capability of abstract thinking

[6]. They’re so important that there is a

dedicated section in this paper for them. The

loss function optimizes the parameters in a

Neural Network [10]. It compares the

“correct” value from training data with the

value that the network predicted so that

backpropagation can occur, and parameters

can be updated. More Hyperparameters that

are important to this project include the

optimizer, number of epochs, and batch size.

Optimizers refresh the weight parameters to

minimize the loss function. The loss

function works by advising the optimizer on

how accurate it is [17]. Epochs are the

number of times the neural network passes

through all the training data. Note that there

is a significant difference between iteration

and epoch. Iteration is the number of passes

(one pass = one forward pass + one

backward pass), an epoch is the number of

times the entire training data has been

viewed by the program. Batch size is the

number of data samples that are propagated

through the network in one

iteration. Activation Function: The choice

of the activation function is vital to receive

desirable results, and the right choice is

dependent on the problem being solved. For

example, the Softmax Function is practical

in situations where classification is required.

We determined that the RELU (rectified

linear unit) function is best for our project

because it is capable of working with

numbers higher than one, unlike the

Sigmoid Function. The Sigmoid Function is

useful for percentile data which can be

converted to decimals between zero and one.

It is what is used in DANN 2.0. The

Sigmoid Function can also be built manually

in Python, without the need for external

15

APIs like Keras. This also means that

execution in Netlogo is possible. Due to a

bug in the Netlogo py extension, DANN 3.1,

which uses the RELU function, cannot be

applied to Mellitus. See “DANN(3.1)-

RELU” for information on DANN 3.1. The

linear activation function is simple yet

essential to our project. It is essentially a

linear regression model (y = ax). It wouldn’t

be beneficial to use in the hidden layers

because it isn’t capable of advanced

calculations. However, it is useful in the

output layer. About Tensorflow and

Keras: Tensorflow is an open-source

software library developed by Google for

machine learning execution, including

neural networks. Keras is also an open-

source library. Its primary purpose is to

create neural networks. Both APIs were

used in Python. Keras works on top of

Tensorflow [5]. Keras has been

implemented in DANN 3.1 so that the

RELU activation function can be used.

Using Keras is relatively simple. We made a

Sequential model, which is a linear stack of

layers. Packages that were implemented in

our project include: add, compile, fit, and

predict. Add is used for adding new layers

into the sequential model. Compile

configures the model for training. Fit trains

the model with a number of epochs. Predict

is used to return predictions from the

model.

DANN(2.0) – Sigmoid:

 DANN 2.0 is the first stable edition of

DANN and was built in Python 3.7. It uses

Sigmoid as the Activation Function. This

decision brings advantages and

disadvantages. It has a domain of all real

numbers and a range of 0 to 1. As long as

16

the input values are proportional, it is

capable of monotonically adapting the

values so that they are between 0 and 1 and

can be used by the network. This is practical

for comparing percent variables. All

significant variables were percentage values

or had a form of percentage alternative. For

example, percent of persons in poverty,

percent of persons with a high school

education or higher, and percent of persons

without health insurance are all variables

that contribute notably to diabetes. No

external machine learning modules were

used in this version. However, Numpy was

used: a package for scientific computing

with Python [7]. The Sigmoid Function was

manually utilized using NumPy by inserting

the Sigmoid equation into the program. One

of the packages that was used is Exp, which

is capable of calculating the exponential of

elements in an array [9]. It is established on

Euler’s number, an irrational number that is

the base for the natural logarithm. Another is

Array, which is useful for data handling and

putting values into arrays. Also, Dot is a

very important tool, the equivalent to matrix

multiplication. The data was inputted in

arrays. Twenty counties were used as

training data. There are thirty-three counties

in New Mexico. We determined that twenty

training counties are most desirable so that

we could retain a large and diverse set of

testing data. DANN 2.0 analyzes education,

poverty, persons without health insurance,

percent American Indian and Alaska Native,

and commute time divided by 100. The

commute time data is divided by 100 for the

Sigmoid function. Since the commute time

dataset used to train the network is also

Figure 7- Graph of Sigmoid function

17

divided by 100, this should not interfere

with the accuracy of its prediction.

Implementing the percent of American

Indian and Alaska Native into DANN

should also help eliminate the potential

interference of type 1 diabetes. As stated

before, there is nothing that is known to

prevent type 1 diabetes, and about 95

percent of diabetes cases are type 2. Since a

factor that contributes to both types of

diabetes is

ethnicity and

the data that

was used to

train the

network is the

rate of both

types of diabetes, the American Indian and

Alaska Native variable may contribute

extensively toward DANN’s output. DANN

2.0 is especially minimalistic. One neuron is

modeled with five input connections and one

output connection. When operating in a

native Python IDE, we set the iterations at

300,000. This is more than enough for the

program to come to a reliable conclusion.

However, we have observed a noticeable

decline in output accuracy when lowering

the iterations. In Mellitus, the iterations are

set to 100,000 to minimize the amount of

lag. The reason why this version of DANN

plays an important role in our project is that

it is the only version of DANN that is

functional in Mellitus. (see “Netlogo

Execution Shell Bug” for more information

about why other versions of DANN cannot

be used in Mellitus). Evaluation and

Testing: The performance of DANN 2.0

varies. In some situations, it is capable of

predicting the diabetes rate almost exactly,

while in others, it fails to reach this goal.

Note that Table 1 shows the results from one

trail, inputting the appropriate data for each

county. We chose Los Alamos and De Baca

county to test with because each has

relatively unique statistics. For instance, Los

Figure 8- Diagram of DANN 2.0

18

Alamos County has a distinctively high

education level, while De Baca county has

the highest diabetes rate in New Mexico.

The most prominent figure in Table 1 is the

predicted diabetes rate of Los Alamos

County. It was essentially able to predict the

diabetes rate with perfect accuracy. This

may be due to an anomaly in the singular

trial. We did use “seed()” in the Python

random module so that the random number

output would remain the same. As stated in

“About Neural Networks”, weights and

biases are initially set to random values and

adjusted later by the network itself. Using

Seed means that the program begins with the

same weights and biases every time it runs

and therefore outputs a similar value every

run given comparable data. If Seed was

removed, we could see more or less accurate

predictions, but they would certainly be far

less consistent.

DANN(3.1) -RELU:

 DANN 3.1 is the most advanced and

complex version of DANN. It utilizes the

RELU activation function, allowing for

whole number data output. Keras is

implemented and introduces access to many

Hyperparameters that are not available in

DANN 2.0. This allows us to fine-tune the

neural network to produce the best results.

In contrast to DANN 2.0, this version is also

a Deep Neural Network, with two hidden

layers. It works with the same dataset as 2.0

with twenty counties and five variables.

Table 1- Accuracy testing of DANN 2.0

19

However, it is capable of keeping the values

in their original format instead of requiring

them to be divided by 100. There are five

nodes in each hidden layer. The RELU

function is used in all layers except in the

output layer. The output layer makes use of

a classic linear activation function. After

observing the performance of the network in

several circumstances, we found that it was

most accurate when the output layer lacks

the RELU function. This means that the

main calculations are taking place in the

input and hidden layers, and the output layer

reflects the result of these calculations with

a linear regression. The program has 45

epochs and a batch size of 5. There are 20

training examples, so it takes four iterations

to complete one epoch. The program has

180 iterations in total. This number is far

less than in 2.0, but 3.0 is able to complete

its iterations more effectively due to many

improvements, like additional adjustable

hyperparameters. Its loss function is a

commonly used regression loss function,

mean-squared-error (MSE), also known as

mean-squared-deviation (MSD). The

program’s optimizer is the Stochastic

Gradient Descent (SGD) optimizer, which

brings support for new hyperparameters like

momentum and learning rate. Since there is

no exact method to determine where the

hyperparameters should ideally be set,

various frameworks were experimented

with, and it was eventually concluded that

the most desirable results are achieved with

the learning rate set to 0.001 and the

momentum set to 0.7. DANN 3.1 is a

Sequential Keras model. Refer to “About

Figure 9- Diagram of DANN 3.1

20

Tensorflow and Keras” for explanations of

the Keras packages that were used to

construct the network. Like 2.0, it was built

in Python 3.7. Evaluation and

Testing: DANN 3.1 has proven to be

considerably more accurate than DANN 2.0.

In this version, the program tends to output a

different prediction every run for the

counties. This is due to the program

adjusting parameters differently each run.

No tool is utilized to use the same random

values every run like Seed was used in

DANN 2.0. Although this version contains

many more hyperparameters, weights and

biases still start off with random values.

DANN 3.1 was more accurate than DANN

2.0 in most counties in which it was tested.

This is likely due to all of the improvements

that were discussed, like an additional

hidden layer with more neurons and the

RELU activation function. Table 2 shows

the behavior of DANN 3.1 from one trial.

Conclusion:

Results:

 Mellitus is a practical template for

accurately modeling a town, its

demographics, and its diabetes rate. Factors

have been identified that contribute to

diabetes and have been manifested in a

computational method. Mellitus is especially

useful for analyzing the output of DANN

2.0. When using a traditional Python

interpreter to run DANN, the diabetes rate

prediction is outputted a single time per run.

County Prediction Correct

Roosevelt 7.8% 7.4%

Socorro 15.9% 14.7%

Los Alamos 6.8% 5%

De Baca 16.4% 23.3%

Table 2- Accuracy testing of DANN 3.1

21

In Mellitus, DANN can be used, not only to

predict a diabetes rate but to identify which

and to what significance input variables are

contributing to the prediction. It can be

concluded from the many techniques that we

used that the variables that have a significant

impact on diabetes rates in New Mexico

counties are, from least significant to most:

percent of American Indian and Alaska

Native, poverty, education, commute time,

and health insurance. This was determined

using the plot in Mellitus 5.1, visualizing the

virtual diabetes rate. Each variable’s slider

was adjusted to a value that resembled a

proportional half-way value. For instance, if

the variable was a percentage, it was

adjusted to fifty percent. If the variable was

a numerical value, the slider was adjusted to

half-way. This process was applied to one

variable at a time, while the other variables

were set to zero. Of course, this isn’t an

effective way of simulating a real-world

town, but it is sufficient for determining how

much each variable’s impact is on the

diabetes rate. Then it was possible to

visualize a change in the virtual diabetes rate

using the plot. A more significant change in

the slope of the line indicates a more

significant effect on diabetes rates. Figure

10 shows the results of this experiment. A

surprising aspect of this test is the negative

correlation between mean commute time

and diabetes rates. The previously shown

scatter plot suggested a positive correlation.

It is unclear why DANN reacted to the

scenario this way, but it could be due to a

shortage of training data or the lack of the

Figure 10- Mellitus 5.1 DANN output visualization

22

RELU activation function. As stated earlier,

the commute time value in DANN 2.0 has to

be divided by 100 so that it works with the

Sigmoid function. However, since the

commute time training data is also divided

by 100, this should not interfere with our

results.

Netlogo Execution Shell Bug:

Due to a bug in Netlogo 6.1.1, Mellitus is

unable to support DANN 3.1. In contrast to

2.0, 3.1 requires external packages like

Keras and Tensorflow. Anaconda is a

popular data science platform that contains

all of the packages that Mellitus requires, so

we decided to use an Anaconda virtual

environment with the Netlogo py extension.

When using an Anaconda virtual

environment, the program gives an error

message that states “Extension exception:

This is a bug. Please report”. The

appropriate path to the environment was

entered in the Python tab in Netlogo. If the

path to the Python executable is empty,

Netlogo will attempt to find the appropriate

executable. When the executable is empty,

Netlogo will show various bug messages,

and the packages that DANN 3.1 requires

still cannot be used. In an attempt to resolve

this issue, Mellitus was translated to several

versions of Netlogo other than 6.1.1 to

detect if the program reacts differently. In

every version, the program showed an error

message, each stating something along the

lines of a bug existing in Netlogo.

23

Suggestions for Further Implementation:

 In the future, more variables should be

implemented into Mellitus. DANN can be

enabled to output an even more accurate

diabetes rate by expanding the data set to

include all 33 New Mexico counties.

Currently, DANN evaluates 20 counties,

which is not as desirable as one would like.

This concept could even be applied outside

New Mexico. Web scraping could be used to

collect mass amounts of data on subjects

such as fast-food or recreational facilities

and can be used on a global scale. We would

also like to conquer the execution shell bug

in Netlogo and have DANN 3.1 support in

Mellitus. If we could gain access to a large

database that includes the data that is needed

on a national or global scale, DANN could

be trained to perfection and may even have

mainstream usage in biomedical and

government administrative fields. If Mellitus

is correct, ethnicity has less effect on

diabetes than other factors that can be

controlled. When changes are being made

that alter demographic variables in a town,

people can be educated of the domino effect

that comes with them. Many factors that

benefit the general New Mexican society

also help the cause for lower diabetes rates.

This includes more access to education and

affordable health insurance. The first step

has already been taken in expanding our

project by making Texas versions of DANN.

See the Appendix for links and information.

24

Acknowledgements:

 We would like to thank Mr. Alan Daugherty from Melrose for introducing us and guiding us

through the Supercomputing Challenge. We would like to thank Mrs. Leah Lee for being our

sponsor teacher. We would also like to thank our parents for showing support throughout this

project. Also, we would like to thank Mrs. Elnabeth Grau, our school Superintendent, and Mrs.

Michell Edwards, our principal, for all their support. Diane Lauderdale from the University of

Chicago Biological Sciences contributed significantly to our project by counseling us against the

use of the Chi-Square Test, which we now know is ineffective for our uses. Instead, we created

DANN and took a machine learning approach to our problem. Thank you to Mrs. Jennie

Piepkorn for proofreading the Final Report and assisting us in revision.

25

References:

[1]. Brownlee, J. (2020, February 5). Understand the Impact of Learning Rate on Neural

Network Performance. Retrieved from https://machinelearningmastery.com/understand-

the-dynamics-of-learning-rate-on-deep-learning-neural-networks/

[2]. Data & Statistics. (2019, May 30). Retrieved from

https://www.cdc.gov/diabetes/data/index.html

[3]. Diabetes. (n.d.). Retrieved from https://www.who.int/news-room/fact-

sheets/detail/diabetes

[4]. Frankenfield, J. (2020, January 29). What Are Artificial Neural Networks? Retrieved

from https://www.investopedia.com/terms/a/artificial-neural-networks-ann.asp

[5]. Keras: The Python Deep Learning library. (n.d.). Retrieved from https://keras.io/

[6]. Khandelwal, R. (2019, February 4). Overview of different Optimizers for neural

networks. Retrieved from https://medium.com/datadriveninvestor/overview-of-different-

optimizers-for-neural-networks-e0ed119440c3

[7]. NumPy. (n.d.). Retrieved from https://numpy.org/

[8]. Health, D. of. (2017). Complete Health Indicator Report of Death Rates from

Leading Causes of Death. Retrieved from

https://ibis.health.state.nm.us/indicator/complete_profile/DthRateLdgCause.html

[9]. numpy.exp¶. (n.d.). Retrieved from

https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html

[10]. Sakshi, T. (2018, February 6). Activation Functions in Neural Networks. Retrieved

from https://www.geeksforgeeks.org/activation-functions-neural-networks/

[11]. Sullivan, D. (2018, October 25). Cost of Type 2 Diabetes. Retrieved March 19,

2020, from https://www.healthline.com/health/cost-of-diabetes#1

[12]. The Burden of Diabetes in New Mexico. (n.d.). Retrieved March 18, 2020, from

http://main.diabetes.org/dorg/PDFs/Advocacy/burden-of-diabetes/new-mexico.pdf

[13]. Type 1 Diabetes. (2020, March 11). Retrieved from

https://www.cdc.gov/diabetes/basics/type1.html

[14]. U.S. Census Bureau QuickFacts: New Mexico. (n.d.). Retrieved from

https://www.census.gov/quickfacts/NM

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://www.cdc.gov/diabetes/data/index.html
https://www.investopedia.com/terms/a/artificial-neural-networks-ann.asp
https://keras.io/
https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3
https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3
https://numpy.org/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.healthline.com/health/cost-of-diabetes#1
http://main.diabetes.org/dorg/PDFs/Advocacy/burden-of-diabetes/new-mexico.pdf
https://www.cdc.gov/diabetes/basics/type1.html

26

[15]. U.S. Department of Health and Human Services Office of Minority Health. (2017).

Retrieved from https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=4&lvlid=33

[16]. U.S. Diabetes Surveillance System. (n.d.). Retrieved from

https://gis.cdc.gov/grasp/diabetes/DiabetesAtlas.html#

[17]. Verma, S. (2020, February 13). Understanding different Loss Functions for Neural

Networks. Retrieved from https://towardsdatascience.com/understanding-different-loss-

functions-for-neural-networks-dd1ed0274718

[18]. Weights & Biases - Fundamentals of Neural Networks. (n.d.). Retrieved from

https://www.wandb.com/articles/fundamentals-of-neural-networks

[19]. What is Type 1 Diabetes? (n.d.). Retrieved from

https://www.endocrineweb.com/conditions/type-1-diabetes/type-1-diabetes

https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=4&lvlid=33
https://towardsdatascience.com/understanding-different-loss-functions-for-neural-networks-dd1ed0274718
https://towardsdatascience.com/understanding-different-loss-functions-for-neural-networks-dd1ed0274718
https://www.wandb.com/articles/fundamentals-of-neural-networks
https://www.endocrineweb.com/conditions/type-1-diabetes/type-1-diabetes

27

Appendix:

DANN(2.0) Code:

from numpy import exp, array, random, dot

#[education,poverty,persons without health insurance, percent of American Indian
and Alaska Native alone, commute time / 100]
train_x = array([[.888, .165, .097, .062, .222],
 [.939, .233, .10, .038, .125],
 [.78, .189, .118, .023, .199],
 [.826, .286, .126, .438, .229],
 [.892, .198, .091, .028, .176],
 [.83, .172, .096, .021, .152],
 [.863, .204, .133, .02, .122],
 [.799, .249, .115, .024, .209],
 [.845, .157, .088, .024, .187],
 [.871, .207, .077, .025, .172],
 [.799, .243, .083, .034, .155],
 [.88, .167, .092, .021, .25],
 [.792, .257, .10, .013, .215],
 [.729, .161, .12, .02, .206],
 [.915, .164, .128, .043, .189],
 [.978, .039, .03, .013, .162],
 [.686, .272, .129, .023, .179],
 [.754, .323, .174, .792, .222],
 [.916, .235, .10, .03, .40],
 [.835, .203, .107, .085, .185]])

train_y = array([[.064, .063, .104, .127, .101, .073, .233, .082, .086, .059, .106,
.05, .065, .113, .088, .05, .091, .167, .104, .093]]).T

random.seed(1)

#models a single neuron with 5 input connections and 1 output connection
#assigns random weights
neuron = 2 * random.random((5, 1)) - 1
for iteration in range(300000):
 output = 1 / (1 + exp(-(dot(train_x, neuron))))
 neuron += dot(train_x.T, (train_y - output) * output * (1 - output))
#testing new situation
print(1 / (1 + exp(-(dot(array([.978, .039, .03, .013, .162]), neuron)))))

28

DANN(3.1) Code:

import keras

from keras.models import Sequential

from keras.layers import Dense

from numpy import array

#[education,poverty,persons without health insurance, percent of American Indian

and Alaska Native alone, commute time]

x_train = array([[.888, .165, .097, .062, 22.2],

 [.939, .233, .10, .038, 12.5],

 [.78, .189, .118, .023, 19.9],

 [.826, .286, .126, .438, 22.9],

 [.892, .198, .091, .028, 17.6],

 [.83, .172, .096, .021, 15.2],

 [.863, .204, .133, .02, 12.2],

 [.799, .249, .115, .024, 20.9],

 [.845, .157, .088, .024, 18.7],

 [.871, .207, .077, .025, 17.2],

 [.799, .243, .083, .034, 15.5],

 [.88, .167, .092, .021, 25],

 [.792, .257, .10, .013, 21.5],

 [.729, .161, .12, .02, 20.6],

 [.915, .164, .128, .043, 18.9],

 [.978, .039, .03, .013, 16.2],

 [.686, .272, .129, .023, 17.9],

 [.754, .323, .174, .792, 22.2],

 [.916, .235, .10, .03, 40],

 [.835, .203, .107, .085, 18.5]])

y_train = array([[.064], [.063], [.104], [.127], [.101], [.073], [.233], [.082],

[.086], [.059], [.106], [.05], [.065], [.113],

[.088], [.05], [.091], [.167], [.104], [.093]])

x_test = array([[.891, .214, .126, .075, 19.7]])

model = Sequential()

model.add(Dense(units=5, activation='relu', input_dim=5))

model.add(Dense(units=5, activation='relu'))

model.add(Dense(units=1, activation="linear"))

model.compile(loss='mean_squared_error', optimizer=keras.optimizers.SGD(lr=0.001,

momentum=0.7, nesterov=True))

29

model.fit(x_train, y_train, epochs=45, batch_size=5)

print(model.predict(x_test, batch_size=1))

Additional Scatter Plots:

30

31

Link to Texas version of DANN- Sigmoid (Beta):

https://drive.google.com/open?id=1eHs_VlIwHTuSCZPXtLzBOyHbNiS_fblj

Link to Texas version of DANN- RELU (Beta):

https://drive.google.com/open?id=1gBCsa0TPQcAAjwsp-QPM8wyeZILA1Imu

